Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain

نویسندگان

  • Karan Gulati
  • Moom Sinn Aw
  • Dusan Losic
چکیده

UNLABELLED The blood-brain barrier (BBB) blocks the passage of active molecules from the blood which makes drug delivery to the brain a challenging problem. Oral drug delivery using chemically modified drugs to enhance their transport properties or remove the blocking of drug transport across the BBB is explored as a common approach to address these problems, but with limited success. Local delivery of drugs directly to the brain interstitium using implants such as polymeric wafers, gels, and catheters has been recognized as a promising alternative particularly for the treatment of brain cancer (glioma) and neurodegenerative disorders. The aim of this study was to introduce a new solution by engineering a drug-releasing implant for local drug delivery in the brain, based on titanium (Ti) wires with titania nanotube (TNT) arrays on their surfaces. Drug loading and drug release characteristics of this system were explored using two drugs commonly used in oral brain therapy: dopamine (DOPA), a neurotransmitter agent; and doxorubicin (DOXO), an anticancer drug. Results showed that TNT/Ti wires could provide a considerable amount of drugs (>170 μg to 1000 μg) with desirable release kinetics and controllable release time (1 to several weeks) and proved their feasibility for use as drug-releasing implants for local drug delivery in the brain. PURPOSE In this report, a new drug-releasing platform in the form of nanoengineered Ti wires with TNT arrays is proposed as an alternative for local delivery of chemotherapeutics in the brain to bypass the BBB. To prove this concept, drug loading and release characteristics of two drugs important for brain therapy (the neurotransmitter DOPA and the anticancer drug DOXO) were explored. METHODS Titania nanotube arrays on the surface of Ti wires (TNT/Ti) were fabricated using a simple anodization process, followed by separate loading of two drugs (DOPA and DOXO) inside the nanotube structures. The loading and in vitro release characteristics of prepared TNT/Ti implants were examined using thermogravimetric analysis (TGA) UV-Vis spectroscopy. RESULTS Scanning electron microscopy studies confirmed that well-ordered, vertically aligned, densely packed nanotube arrays with an average diameter of 170 nm and length 70 μm were formed on the surface of TNT/Ti wires. TGA results showed a total drug loading of 170 μg and 1200 μg inside the TNTs for DOPA and DOXO respectively. Two-phase drug release behavior was observed including a fast release (burst) for the first 6 hours and a prolonged slow release phase for 8 days, both with acceptable dosage and desirable release kinetics. The physical, structural, loading and release characteristics of prepared TNT/Ti implants showed several advantages in comparison with existing and clinically proved brain implants. CONCLUSION Our results confirmed that TNT/Ti wires can be successfully employed as a suitable platform to release neurotransmitters such as DOPA and anticancer drugs such as DOXO. Hence, they are a feasible alternative as drug-releasing implants for local drug delivery in the brain to combat neurodegenerative disorders or brain tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

PURPOSE The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery METHODS Nanoeng...

متن کامل

Blood–brain barrier: a real obstacle for therapeutics

Correspondence: Farooq A Shiekh URMITE, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France Tel +33 049 132 4480 Fax +33 049 138 7772 Email [email protected] To the editor In a recent report published in the International Journal of Nanomedicine, Gulati et al have described the most innovative study addressing an important issue of the “blood–brain barrier,” which can act ...

متن کامل

Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [...

متن کامل

Vincristine loaded niosomes as an effective drug delivery system for lymphoma

  Aim and Background: Vincristine is a herbal anticancer drug which is used to treat a wide range of cancers such as lymphoma. Niosomes are important drug carriers. The aim of this study was to prepare PEGylated niosomal form of vincristine in order to increase its efficacy in lymph nodes’ cancer. Material and Methods: PEGylated niosomal vincristine (PEG-nVCR) was prepared by thin film hydrat...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012